Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andreas Decken,* Crystal D. Craig and Frank Bottomley

Department of Chemistry, University of New Brunswick, Fredericton, NB, PO Box 45222, Canada E3B 6E2

Correspondence e-mail: adecken@unb.ca

Key indicators

Single-crystal X-ray study
$T=198 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.017$
$w R$ factor $=0.045$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

μ-Diphenylphosphido- μ-hydrido-bis[carbonyl($\boldsymbol{\eta}^{5}$-cyclopentadienyl)iron(II)]

The title compound, $\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{P}\right) \mathrm{H}(\mathrm{CO})_{2}\right]$, features near symmetric hydride and phosphide bridges. The two carbonyl/cyclopentadienyl groups are in trans positions. One of the cyclopentadienyl rings is disordered over two positions, with occupancies of 0.65 and 0.35 .

Comment

While dinuclear iron hydride complexes are a well known class of compounds, crystallographically characterized examples of the neutral monohydrido complexes are rare. The only examples are $\left(\mu_{2}-\mathrm{CNMe}_{2}\right)\left(\mu_{2}-\mathrm{H}\right) \mathrm{Fe}_{2} \mathrm{Cp}_{2}(\mathrm{CO})_{2}$, (II) (Albano et al., 2000), and $\left(\mu_{2}-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{H}\right)\left(\mu_{2}-\mathrm{dppm}\right) \mathrm{Fe}_{2} \mathrm{Cp}_{2}$, (III) (dppm $=\mathrm{Ph}_{2} \mathrm{P}_{-} \mathrm{CH}_{2}-\mathrm{PPh}_{2}$; Raubenheimer et al., 1992).

(I)

The title compound, (I), features near symmetric hydride and phosphide bridges, with bond distances 1.66 (2) (Fe1$\mathrm{H} 1), \quad 1.62(2) \quad(\mathrm{Fe} 2-\mathrm{H} 1), \quad 2.1836(4) \quad(\mathrm{Fe} 1-\mathrm{P} 1) \quad$ and 2.1940 (4) $\AA(\mathrm{Fe} 2-\mathrm{P} 2)$. The $\mathrm{Fe}-\mathrm{H}$ distances are similar to those found in compounds (II) $[1.59$ (2) and 1.63 (2) \AA] and

Figure 1
A view of the title compound, with displacement ellipsoids drawn at the 30% probability level. Only the major component of the disordered cyclopentadienyl ring is shown. H atoms, including the bridging H1 species, are shown as spheres of arbitrary radii.

Received 2 August 2004
Accepted 11 August 2004 Online 21 August 2004
(III) $[1.68(2)$ and $1.78(2) \AA]$. The $\mathrm{Fe}-\mathrm{Fe}$ distance [2.7098 (3) \AA] is slightly shorter than in compound (III) [2.787 (1) \AA], but significantly longer than in compound (II) [2.5877 (9) A]; the latter difference is most likely due to the smaller C atom in the carbyne bridge. Compound (I) contains a planar four-membered heterocycle [atoms H1, Fe1, Fe2 and P1] and the cyclopentadienyl and carbonyl groups are in a trans geometry, respectively, with a $\mathrm{C} 18-\mathrm{Fe} 1-\mathrm{Fe} 2-\mathrm{C} 24$ torsion angle of $166.78(7)^{\circ}$. This is in contrast to compounds (II) and (III), where a cis arrangement is observed, in compound (III) necessitated by the bridging dppm group. One of the cyclopentadienyl rings in complex (I) is disordered over two positions, with occupancies of 0.65 ($\mathrm{C} 13-\mathrm{C} 17$) and 0.35 (C13A-C17A), respectively.

Experimental

The title compound was prepared according to the literature procedure of Hayter (1963).

Crystal data

$\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{P}\right) \mathrm{H}(\mathrm{CO})_{2}\right]$	Mo $K \alpha$ radiation
$M_{r}=484.08$	Cell parameters from 6155
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$	reflections
$a=10.2945(5) \AA$	$\theta=2.4-28.6^{\circ}$
$b=12.5071(6) \AA$	$\mu=1.51 \mathrm{~mm}^{-1}$
$c=15.9110(8) \AA$	$T=198(2) \mathrm{K}$
$V=2048.61(17) \AA^{3}$	Prism, dark red
$Z=4$	$0.48 \times 0.35 \times 0.30 \mathrm{~mm}$
$D_{x}=1.570 \mathrm{Mg} \mathrm{m}^{-3}$	
Data collection	
Bruker SMART1000/P4	4609 independent reflections
\quad diffractometer	4506 reflections with $I>2 \sigma(I)$
ω and φ scans	$R_{\text {int }}=0.023$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-12 \rightarrow 13$
$T_{\min }=0.561, T_{\text {max }}=0.635$	$k=-16 \rightarrow 16$
14556 measured reflections	$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0186 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$	$+0.1562 P]$
$w R\left(F^{2}\right)=0.045$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.05$	$(\Delta / \sigma)_{\max }=0.002$
4609 reflections	$\Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3}$
311 parameters	$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$
H atoms treated by a mixture of	Absolute structure: Flack (1983),
\quad independent and constrained	1955 Friedel pairs
\quad refinement	Flack parameter $=-0.002(8)$

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances fixed at $0.95 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the carrier C atom. Atom H 1 was found in a Fourier difference map and refined with an isotropic displacement parameter.

Data collection: SMART (Bruker, 1997-1999); cell refinement: SAINT (Bruker, 1997-1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1977a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

References

Albano, V. G., Busetto, L., Monari, M. \& Zanotti, V. (2000). J. Organomet. Chem. 606, 163-168.
Bruker (1997-1999). SMART (Version 5.054) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hayter, R. G. (1963). J. Am. Chem. Soc. 85, 3120-3124.
Raubenheimer, H. G., Scott, F., Cronje, S. \& vanRooyen, P. H. (1992). J. Chem. Soc. Dalton Trans. pp. 1859-1863.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

